Coefficients of Multiplication Formulas for Classical Orthogonal Polynomials

نویسنده

  • D. D. Tcheutia
چکیده

In this paper, using both an analytic and algorithmic approach, we derive the coefficients Dm(n, a) of the multiplication formula pn(ax) = n ∑ m=0 Dm(n, a)pm(x) or the translation formula pn(x +a) = n ∑ m=0 Dm(n, a)pm(x), where {pn}n≥0 is an orthogonal polynomial set, including the classical continuous orthogonal polynomials, the classical discrete orthogonal polynomials, the q-classical orthogonal polynomials, as well as the classical orthogonal polynomials on a quadratic and a q-quadratic lattice. We give a representation of the coefficients Dm(n, a) as a single, double or triple sum whereas in many cases we get simple representations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

Inversion Formulas Involving Orthogonal Polynomials and Some of Their Applications

We derive inversion formulas involving orthogonal polynomials which can be used to find coefficients of differential equations satisfied by certain generalizations of the classical orthogonal polynomials. As an example we consider special symmetric generalizations of the Hermite polynomials.

متن کامل

A characterization of the four Chebyshev orthogonal families

We obtain a property which characterizes the Chebyshev orthogonal polynomials of first, second, third, and fourth kind. Indeed, we prove that the four Chebyshev sequences are the unique classical orthogonal polynomial families such that their linear combinations, with fixed length and constant coefficients, can be orthogonal polynomial sequences. 1. Introduction The classical orthogonal polynom...

متن کامل

Two variable orthogonal polynomials and structured matrices

We consider bivariate real valued polynomials orthogonal with respect to a positive linear functional. The lexicographical and reverse lexicographical orderings are used to order the monomials. Recurrence formulas are derived between polynomials of different degrees. These formulas link the orthogonal polynomials constructed using the lexicographical ordering with those constructed using the re...

متن کامل

1 6 Ju n 20 06 A matrix approach to the computation of quadrature formulas on the unit circle 1 Maŕıa

In this paper we consider a general sequence of orthogonal Laurent polynomials on the unit circle and we first study the equivalences between recurrences for such families and Szegő’s recursion and the structure of the matrix representation for the multiplication operator in Λ when a general sequence of orthogonal Laurent polynomials on the unit circle is considered. Secondly, we analyze the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015